
Theory Interpretations

Theory Interpretations
Consistency Relative to PVS

César A. Muñoz

NASA Langley Research Center
Cesar.A.Munoz@nasa.gov

Theory Interpretations

Logic 101

I A (formal) system is inconsistent if we can prove both A and
¬A.

I A consistency proof is hard. It is easier to prove that a system
is consistent relative to another system (believed to be
consistent itself).

I Relative consistency is shown by exhibiting model.

Theory Interpretations

Inconsistency, It Can Happen to You

I This axiom is found in a highly referenced paper written in
1999:

C : [real-> int]
MyAx : AXIOM

FORALL(x,y:real): x < y IMPLIES C(x) < C(y)

I The theory is inconsistent as MyAx implies that real numbers
are enumerable.

I The inconsistency was revealed by L. Pike using theory
interpretations.

Theory Interpretations

Theory Interpretations in PVS

I A mechanism to construct models of axiomatic PVS theories,
by instantiating uninterpreted types and constants.

I Consistency relative to the PVS logic can be shown via theory
interpretations.

Theory Interpretations

Is This Theory Consistent?
(Relative to the PVS System)

myTh : THEORY
BEGIN

C : [real-> int]
x,y : VAR real

MyAx : AXIOM
x < y IMPLIES C(x) <= C(y)

END myTh

Theory Interpretations

For the Impatient

myTh : THEORY
BEGIN
C : [real-> int]
x,y : VAR real

MyAx : AXIOM
x < y IMPLIES
C(x) <= C(y)

END myTh

myThi : THEORY
BEGIN
IMPORTING myTh{{

C(x:real) := floor(x)
}}

END myThi

IMP_myTh_MyAx_TCC1: OBLIGATION
FORALL (x, y: real): x < y
IMPLIES floor(x) <= floor(y);

Theory Interpretations

Isn’t that What Theory Parameters are for?

myThp[C:[real->int]] : THEORY
BEGIN

MyAx : AXIOM
FORALL(x,y:real): x < y
IMPLIES C(x) <= C(y)

END myThp

myThpi : THEORY
BEGIN

IMPORTING myThp[floor]
END myThpi

No. Theory parameters do not generate proof obligations for the
axioms in the source theory.

Theory Interpretations

Can This Be Done With Subtying, Assumptions, . . . ?

myThp1[C:[real->int]] : THEORY
BEGIN

ASSUMING
MyAx : ASSUMPTION
FORALL(x,y:real): x < y
IMPLIES C(x) <= C(y)

ENDASSUMING
END myThp1

myThp2[C:c:[real->int]| FORALL(x,y:real):
x < y IMPLIES c(x) <= c(y)] : THEORY

BEGIN
END myThp2

Possibly.

Theory Interpretations

Theory Parameters vs. Theory Interpretation

Theory interpretations largely subsume theory parameters, but

I Theory parameters are intended for the specification of a
family of problems.

I Theory interpretations are intended for
I Checking the consistency of an axiomatic specification.
I Reification of an abstract data type.
I Animation of an axiomatic specification.

Theory Interpretations

Outline

Consistency Checking

Reification of Abstract Data Types

Animation of Specifications

Advanced Features

Theory Interpretations

Consistency Checking

Consistency Checking

th : THEORY
BEGIN

T : TYPE+
i : T
o : [[T,T]->T]
x,y,z : VAR T

id : AXIOM x o i = x
assoc : AXIOM (x o y) o z = x o (y o z)
inv : AXIOM EXISTS(y): x o y = i AND y o x = i

di : LEMMA
i o x = x

END th

Return ThAsParam Return ThAsDecl

Theory Interpretations

Consistency Checking

A Model or Two (Via Theory Abbreviations)

thi : THEORY
BEGIN

IMPORTING th{{ T:=real, i:=0, o(a,b:real):=a+b }}
AS th0,

th{{ T:=nzreal, i:=1, o(a,b:nzreal):=a*b }}
AS th1

END thi

Theory Interpretations

Consistency Checking

Proof Obligations as TCCs

h0_id_TCC1: OBLIGATION FORALL (x:real): x+0 = x;

th0_assoc_TCC1: OBLIGATION FORALL (x,y,z:real):
x+y+z = x+(y+z);

th0_inv_TCC1: OBLIGATION FORALL (x:real):
EXISTS (y:real): x+y = 0 AND y+x = 0;

th1_id_TCC1: OBLIGATION FORALL (x:nzreal): x*1 = x;

th1_assoc_TCC1: OBLIGATION FORALL (x,y,z:nzreal):
x*y*z = x*(y*z);

th1_inv_TCC1: OBLIGATION FORALL (x:nzreal):
EXISTS (y:nzreal): x*y = 1 AND y*x = 1;

Theory Interpretations

Consistency Checking

To Be or Not to Be Consistent

I Claim: The theory th is consistent if TCCs in thi can be
discharged.

I Remark: The above claim is made at the level of the PVS
meta-theory, i.e., it is an external observation rather than a
fact formally specified/proven in PVS.

I Note: No TCCs will be generated for an axiom

foo : AXIOM 1=0

in th.

I Question: Why ?

Theory Interpretations

Reification of Abstract Data Types

Reification of Abstract Data Types

Process of making a concrete type from an abstract data type.

Reminder:

I Abstract data types in PVS, i.e., DATATYPEs, are axiomatically
defined.

I Enumeration types are abstract data types.

Theory Interpretations

Reification of Abstract Data Types

Enumeration Types are Abstract Data Types

states : THEORY
BEGIN

State : TYPE = {idle,waiting,running}
END states

states_as_nat : THEORY
BEGIN

NatState : TYPE = below[3]
n : VAR NatState
IMPORTING states{{ State := NatState,

idle?(n) := n=0, waiting?(n) := n=1, running?(n) := n=2,
idle := 0, waiting := 1, running := 2}}

END states_as_nat

Theory Interpretations

Reification of Abstract Data Types

Proof Obligations

IMP_states_State_inclusive_TCC1: OBLIGATION
FORALL (State_var:NatState):
State_var = 0 OR State_var = 1 OR State_var = 2;

IMP_states_State_induction_TCC1: OBLIGATION
FORALL (p:[NatState -> boolean]):
p(0) AND p(1) AND p(2) IMPLIES
(FORALL (State_var: NatState): p(State_var));

Note that IMP states State induction TCC1 becomes
unprovable if NatState = nat.

Theory Interpretations

Animation of Specifications

Animation of Specifications

Animation is the execution of a specification to validate its
intended semantics.

I Animations in PVS are mostly performed in the Ground
Evaluator.

I PVSio is a PVS package that re-implements the interface to
the Ground Evaluator:
http://shemesh.larc.nasa.gov/people/cam/PVSio.

I Wait for the talk on PVSio.

Theory Interpretations

Animation of Specifications

Lost in Translation?

I The Emacs command M-x ppti displays in a new buffer the
result of a theory interpretation.

I Technical Report: Theory Interpretations in PVS, S. Owre
and N. Shankar, SRI-CSL-01-01. Available from
http://pvs.csl.sri.com/documentation.shtml.

I PVS Release notes available from
http://pvs.csl.sri.com/download.shtml.

Theory Interpretations

Advanced Features

Reification of ADTs

list [T: TYPE]: DATATYPE
BEGIN

null: null?
cons (car: T, cdr:list):cons?

END list

Theory Interpretations

Advanced Features

Lists as Arrays

list_as_array[T:TYPE] : THEORY
BEGIN

List : TYPE = [#
length : nat,
elems : [below(length)->T]

#]

l : VAR List
t : VAR T

Theory Interpretations

Advanced Features

Lists Constructors

Null?(l):bool = length(l) = 0

Null : List = (#
length := 0,
elems := LAMBDA(x:below(0)):epsilon(emptyset[T])

#)

Cons?(l):bool = not Null?(l)

Cons(t,l): List = l WITH [
‘length := l‘length+1,
‘elems(l‘length) := t

]

Theory Interpretations

Advanced Features

Interpretation

IMPORTING list[T]{{ list := List,
null? := Null?,
cons? := Cons?,
null := Null,
cons := Cons }}

END list_as_arrays

Theory Interpretations

Advanced Features

PVS Lists are Consistent

IMP_list_TCC1: OBLIGATION
Null?(Null);

IMP_list_TCC2: OBLIGATION
FORALL (x1: [T, List]):

Cons?(Cons(x1));

IMP_list_list_null_extensionality_TCC1: OBLIGATION
FORALL (null?_var: {x: List | Null?(x)},

null?_var2: {x: List | Null?(x)}):
null?_var = null?_var2;

Note that the record type where elems : [nat->T] does not
directly yield a model of list[T].∗

∗In that case, the model has to be constructed using quotient types.

Theory Interpretations

Advanced Features

Theories as Parameters

Assume that we want to extend the theory th with a definition for
the inverse function:

inverse(x:T):{y:T | x o y = i}

Theory Interpretations

Advanced Features

Extending an Axiomatic Theory (The Wrong Way)

thx2 : THEORY
BEGIN

IMPORTING th

inverse(x:T):{y:T | x o y = i}
END thx2

Theory thx2 does not provide a mechanism to construct an
interpretation of th.

Theory Interpretations

Advanced Features

Theories as Parameters

thx [t:THEORY th] : THEORY
BEGIN

inverse(x:T):{y:T | x o y = i}
END thx

Theory Interpretations

Advanced Features

An Interpretation of thx

thxi : THEORY
BEGIN

IMPORTING thx[th{{T:=nzreal,i:=1,o(a,b:nzreal):=a*b}}]

inv_def : LEMMA
FORALL(a:nzreal): inverse(a) = 1/a

END thxi

Theory Interpretations

Advanced Features

Theory Declarations

Assume that we want define a theory like th but with an extra
commutativity axiom:

commutativity : AXIOM
FORALL(x,y:T): x o y = y o x

Theory Interpretations

Advanced Features

Extending an Axiomatic Theory (The Wrong Way)

thax2[t: THEORY th] : THEORY
BEGIN

commutativity : AXIOM
FORALL(x,y:T): x o y = y o x

END thax2

thaxi2 : THEORY
BEGIN
IMPORTING
thax2[th {{ T:=nzreal,i:=1,o(a,b:nzreal):=a*b}}]

END thaxi2

Theory thaxi2 does not generate a TCC for the commutativity
axiom.

Theory Interpretations

Advanced Features

Theory Declarations

thax : THEORY
BEGIN

t : THEORY = th

commutativity : AXIOM
FORALL(x,y:T): x o y = y o x

END thax

Theory Interpretations

Advanced Features

An Interpretation of thax

thaxi : THEORY
BEGIN

IMPORTING
thax{{t := th {{ T:=nzreal,i:=1,o(a,b:nzreal):=a*b}} }}

END thaxi

Theory Interpretations

Advanced Features

More Theory Declarations

I t1 : THEORY = th {{ T := nzreal }}
t1 is a copy of th where T is substituted by nzreal. All the
rest is left uninterpreted. Axioms related to T are generated as
t1’s TCCs.

I t3 : THEORY = th {{ T ::= myT }}
t1 is a copy of th where T is renamed myT, which is
uninterpreted. No TCCs are generated for t3.

Theory Interpretations

Advanced Features

Same-name Interpretations

The notation
IMPORTING th :-> thi

is syntactic sugar for

IMPORTING th{{ x 1 := thi.x 1, ..., x n := thi.x n }}

where x 1,. . . ,x n are identifiers with the same name in th and
thi.

